Radical Review Notes and Practice

Definition of Square Root: The square root of a number n is the number that gives n when multiplied by itself. Because $a \cdot a = n$.

- **radical** – An expression written with a radical symbol $\sqrt{}$
- **radicand** – the number or expression written inside a radical symbol. For $\sqrt{3}$, the radicand is 3.

Example 1: Determine the square roots of the following numbers.

1) $\sqrt{9} =$ _______ because ______$ \cdot $ ______ = 9
2) $\sqrt{64} =$ _______ because ______$ \cdot $ ______ = 64
3) $\sqrt{169} =$ _______ because ______$ \cdot $ ______ = 169
4) $\sqrt{n^2} =$ _______ because ______$ \cdot $ ______ = n^2

Rules for Simplifying Radical Expressions
1. No radicand can have perfect square factors other than 1.
2. No radicands can contain fractions.
3. No radicals can appear in the denominator of a fraction.

Product Property of Square Roots
For any positive real numbers a and b, $\sqrt{a \cdot b} = \sqrt{a} \cdot \sqrt{b}$.

Example 2: Simplify the following. Show your work.

\[
\sqrt{18} = \sqrt{3 \cdot 3 \cdot 2} \quad \text{Prime factorization of 18}
\]
\[
= \sqrt{3^2 \cdot 2} \quad \text{Product property of square roots}
\]
\[
= 3\sqrt{2}
\]

1) $\sqrt{140} =$
2) $\sqrt{72x^3y^2} =$
3) $\sqrt{5} \cdot \sqrt{35} =$
Quotient Property of Square Roots

For any positive real numbers a and b, $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$.

Example 3: Simplify the following. Show your work.

$$\frac{\sqrt{56}}{\sqrt{7}} = \sqrt{\frac{56}{7}}$$

Quotient property of square roots

$$= \sqrt{8}$$

$$= \sqrt{4} \cdot \sqrt{2}$$

$$= 2\sqrt{2}$$

1) $\sqrt{\frac{34}{25}}$

2) $\sqrt{\frac{84}{4}}$

3) $\sqrt{\frac{121}{9}}$

Rationalizing the Denominator

The process of eliminating a radical from the denominator of a fraction by multiplying both the numerator and the denominator by an appropriate radical.

Example 4: Rationalize the denominator and simplify. Show your work.

$$\frac{\sqrt{5}}{\sqrt{3}} = \frac{\sqrt{5} \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}}$$

Note that $\frac{\sqrt{3}}{\sqrt{3}} = 1$

$$= \frac{\sqrt{15}}{3}$$

1) $\frac{\sqrt{7}}{\sqrt{12}}$

2) $\sqrt{\frac{11}{7}}$

3) $\sqrt{\frac{3}{5}}$

4) $\frac{3\sqrt{5}}{\sqrt{3}}$

PEANUTS®

"You're lucky, do you know that, bird? You're lucky because you don't have to study math!"

"You don't have to know about rationalizing the denominator and dumb things like that!"

"You're really lucky!"

$\frac{7\sqrt{2}}{\sqrt{6}} \cdot \frac{\sqrt{6}}{\sqrt{6}} = \frac{7\sqrt{23}}{6}$

© 1978 United Feature Syndicate, Inc.
For all real numbers \(a\) and \(b\) where \(a \geq 0, b \geq 0\):

\[
\left(\sqrt{a}\right)^2 = a \\
\sqrt{a^2} = a
\]

Example 5: Simplify. Show your work.

1) \(\left(\sqrt{7}\right)^2\)

2) \(\sqrt{(2x)^2}\)

3) \(\left(2\sqrt{3}\right)^2\)

4) \(\sqrt{18}^2\)

5) \(\sqrt{(3ab)^2}\)

6) \(\left(5\sqrt{25}\right)^2\)

Example 6: Simplify. Show your work.

Addition and Subtraction Properties of Radicals

For any positive real numbers \(a\), \(b\) and \(c\) where \(b \geq 0\):

\[
a\sqrt{b} + c\sqrt{b} = (a + c)\sqrt{b} \\
a\sqrt{b} - c\sqrt{b} = (a - c)\sqrt{b}
\]

\[
6\sqrt{7} + 5\sqrt{7} - 3\sqrt{7} = (6 + 5 - 3)\sqrt{7} \\
= 8\sqrt{7}
\]

1) \(5\sqrt{6} + 3\sqrt{7} + 4\sqrt{7} - 2\sqrt{6}\)

2) \(4\sqrt{27} + 5\sqrt{12} + 8\sqrt{75}\)